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Abstract

Dusk Network protocol is a blockchain-based distributed ledger
secured via a novel state machine replication algorithm, enabling a
permission-less participation in the process of state transition validation
while simultaneously providing strong guarantees about the finality of
the state transitions. The protocol is built to preserve user anonymity
on both the transaction and state layers.
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1 Introduction

The idea of digital currencies deployed in a distributed network secured via
cryptographically and game-theoretically sound primitives rather than trust
has been a point of discussion in limited circles of enthusiasts for decades
before being formalized for the first time by David Chaum [Cha82]. Between
then and the introduction of Bitcoin [Nak08] in 2008, numerous researchers
[Cha82; LSS96; Wei98; VCS03; Sza05] in the field attempted to propose a
viable digital currency protocol with mainstream acclaim.

The first mainstream breakthrough happened with release of the
Bitcoin whitepaper [Nak08], which ushered a new era of research and
enthusiasm. Built on top of a novel digital ledger called ”blockchain” and
secured via a Proof-of-Work consensus protocol, inspired by [DGN04] and
[Bac02], Bitcoin became the first truly decentralized digital currency, inspiring
the work on other decentralized applications, such as decentralized DNS
[Nam11] and distributed state machine [Woo19]. Soon after the release
of Bitcoin, researchers started discovering numerous issues previously
unbeknownst to the creator/s of Bitcoin. [KCW13; ES18; GKL15; SSZ17;
PSS17; Bon16] have discovered deficiencies in the assumptions outlined in the
Bitcoin whitepaper with regards to the consensus protocol and the economic
model. Also, the paper [RS12] published by Ron and Shamir has been the
first of many to demonstrate the ease of transaction analysis and the lack of
anonymity that the Bitcoin users maintain.

The issue of excessive energy consumption required to retain the
security guarantees of the data stored in the ledger has been another point of
contention for the Bitcoin protocol. Throughout the years, multiple researchers
have tackled the issue with various solutions, the majority of which revolved
around a concept of ”one-vote-per-share” instead of ”one-vote-per-CPU”.
The idea of Proof-of-Stake was first formalized in the Peercoin whitepaper
[KN12], followed by [Ben+14; BG17]. A more formal approach was taken
by [DPS16; Kia+17; Dav+18]. The protocols referenced above belong to a
family of ”chain-based” Proof-of-Stake protocols, which essentially emulate
the Proof-of-Work family of protocols while maintaining similar security
assumptions. The downside of probabilistic finality of ”chain-based” was
tackled by Algorand [Mic16], which utilized various novel techniques to
guarantee instant finality while retaining the ”permission-lessness” of
the underlying protocol. Unfortunately, the protocol came with it’s own
disadvantages, mainly revolving around the security assumptions (67% of the
circulating supply is required to be honest and participate in the consensus
execution) as well as the committee (2000+) and certificate sizes.

Understanding the importance of anonymity, researchers began
working on techniques to convert Bitcoin into an anonymity-preserving
protocol. The initial idea was to utilize mixers, trusted services which
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combine the inputs and outputs of multiple users into a single transaction.
The downsides of the service was the reliance on trust as well as the lack of
obfuscation of the amounts involved. The initial resurgence of interest in
anonymity-preserving digital currencies was followed by the publications of
[Sab13; Hop+19; Max15; NMM16; Poe16; Fau+18; Bun+19], which took
differing approaches to the problem with differing outcomes. The resulting rise
of interest, has seen multiple projects, such as Monero and Zcash, surge to
popularity with preservation of anonymity being the main selling point.

2 Our Contributions

Our contributions include the development of a novel Private Proof-of-Stake
protocol (to be discussed more thoroughly in Section 5.3), a permission-less
Proof-of-Stake protocol with statistical finality guarantees (Section 5), a quasi-
Turing-complete Virtual Machine with zero-knowledge proof verification capa-
bility (Section 6) and a confidentiality-preserving account-based transaction
model (Section 7.1).

3 Abstract Definition of the Protocol

The core of the Dusk Network protocol is comprised of a digital ledger, called
blockchain. The concept of a blockchain was introduced in the Bitcoin whitepa-
per [Nak08] and has become a mainstay among the digital currency platforms.
In a blockchain, data is assembled into primitives called ”blocks”, which are
cryptographically linked together. The Dusk Network protocol block includes
a ”block header” (to be described below), a body containing the transactional
data and a certificate containing the consensus-related data. The block head-
ers contain the essential information about the corresponding block including
the round integer, a seed, a hash of the of the certificate discussed above, the
root of the Merkle Tree containing the transactions included in the block and a
root of the Patricia-Merkle tree containing the contract state data, alongside a
cryptographic fingerprint (to be explored in Section 4.1) of the previous block,
effectively forming a ”chain” of chronologically descending blocks, starting from
the latest block, also known as a ”head”.

Block

blockHeader

body

certificate

Table 1: Dusk Network block structure
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Block Header

previousBlockHash

round

seed

certificateHash

txRoot

stateRoot

Table 2: Dusk Network block header structure

However, the data incorporated into the blockchain cannot be considered
immutable in a distributed environment, unless the blockchain is secured
through a state machine replication algorithm, otherwise known as a
”consensus protocol” in modern literature. Consensus protocols, briefly
discussed in the Section 1, are a family of algorithms crafted to produce a
consistent log (i.e. a store of data) under various scenarios. In this section,
we are mostly concerned with Byzantine Fault-Tolerant [LSP82] protocols,
designed to tolerate up to a certain threshold of participants exhibiting
arbitrary behaviour (either due to a software bug or an adversarial corruption).

The Bitcoin consensus protocol [Nak08], otherwise known as
”Nakamoto consensus”, in honour of the pseudonymous author of the Bitcoin
whitepaper, as well as other protocols belonging to the family of Proof-of-Work
protocols are examples of probabilistic consensus protocols. Probabilistic
consensus protocols, unlike protocols with instant or near-instant finality,
cannot provide guarantees that the data included in the log is not reversed
at a later stage, instead relying on the data being added to the log later on
featuring the aforementioned data until the probability of the former data
being reversed is considered to be negligible (statistically insignificant). In
the meantime, the intermediate logs of some honest participants (participants
adhering to the protocol rules) can deviate from the logs of the other honest
participants, in an event called a ”fork”. Forks tend to reconcile after a
certain period with the entire set of honest participants stabilizing on a
uniform log, meaning that there exists a single agreed upon ”truth”. On
the other hand, consensus protocols with instant or near-instant finality
cannot or have a negligible probability of a fork. Sometimes referred to as
”BFT-based” protocols, inspired by Practical Byzantine Fault-Tolerance
[CL99], a revolutionary solution of the Byzantine Generals’ Problem [LSP82],
this family of protocols rarely features a ”permission-less” protocol (a common
feature amongst the probabilistic protocols), therefore deviating towards a
more centralized execution as the security of the protocol relies on a constant
preapproved set of consensus participants. Segregated Byzantine Agreement is
a permission-less Proof-of-Stake protocol with statistical finality. Statistical
finality implies that the probability of a fork is negligible. SBA promotes the
segregation of roles through an introduction of two distinct consensus roles:
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Block Generator and Provisioner. Block Generators utilize a novel Private
Proof-of-Stake mechanism, called ”Proof-of-Blind Bid” (to be explored in
Section 4.2), to compete for the leadership of the round and produce a
candidate block as a result. On the other hand, Provisioners utilize their
stakes to compete for the formation of the committees to reach an agreement
on a uniform candidate block and appending the finalized block to the existing
blockchain.

Block #0 Block #1

Block #1

Block #2

Block #2

Block #3

Figure 1: A ”forked” chain

Block #0 Block #1 Block #2 Block #3

Figure 2: A ”uniform” chain

The data included in the blocks consists of block metadata and user transac-
tions. Conceptually, the Dusk Network protocol can be split into two layers: a
transactional layer and a state layer. Transactional layer encompasses the entire
set of transactions included in the blocks whereas the state layer is acted upon
through state-transitional transactions, which represent a subset of transactions.
The state is not directly stored in the block, rather having a cryptographic rep-
resentation of a state included in the block header (stateRoot; see Table 2).
The state consists of the contract-related datastore.

4 Cryptographic Primitives

The section outlines the cryptographic primitives which are utilized extensively
in the protocol. They provide the security, anonymity and immutability required
to fulfill the mission of the Dusk Network protocol .
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4.1 Hash Functions

Cryptographic hash functions compress arbitrary long strings to fixed length
outputs

H(S) −→ T

and are the foundation of a number of cryptographic protocols. Dusk Network
uses hash functions in several capacities: to compress long messages for
signatures, to aggregate large sets into Merkle trees, to compute score
functions in consensus, etc. When a statement on the hash function input
is proven in zero-knowledge, we utilize a zero-knowledge proof-friendly hash
function called Poseidon (Section 4.1.2), whereas for the other use cases we
utilize a faster SHA-3 function (Section 4.1.1).

Only secure hash functions are used. The security of hash
functions boils down to the following three properties:

1. Preimage resistance. It is infeasible for given T to find any S such that
H(S) = T .

2. Second preimage Resistance. For any known S it is infeasible to find
S′ 6= S such that H(S) = H(S′).

3. Collision resistance. It is infeasible to find any S 6= S′ such thatH(S) =
H(S′).

For all hash functions that we use there exists no attack violating these
properties that takes less than 2128 hash function calls, i.e. the hash functions
have security level of 128 bits against all attacks.

In addition to the properties above, we assume that the hash
functions we utilize can instantiate random oracles [BR93]. The latter is an
imaginary object which produces an unpredictable output from any input that
has not been previously asked from it. Dusk Network utilizes several protocols,
that are proven secure assuming the underlying hash function is a random
oracle.

4.1.1 SHA-3

SHA-3 [Dwo15] hash function is an international standard, a modification of a
winning proposal [Ber+13] of a public competition held between 2006 and 2010.
So far no attacks violating the security properties of SHA-3 have been found
even for variants with twice smaller rounds. The Dusk Network protocol utilizes
the SHA-3-256 variant for 128-bit security.

4.1.2 Poseidon

Poseidon [Gra+19] is a recently developed family of hash functions with
zero-knowledge-friendly design. Concretely, Poseidon can be compactly
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represented as an arithmetic circuit over a prime field, which is convenient
for many zero-knowledge proof systems developed recently, including the
Bulletproofs (Section 4.4.2) system we use. We utilize Poseidon in
protocols where we prove statements about pre-images to hash functions or
their composition in trees: digital signatures, blind bid computation, and
membership proofs for large sets. Poseidon yields significant improvement in
both zero knowledge proof generation and verification time, being 4-5 times
faster than Pedersen hash used in Zcash [Hop+19] and more than 100 times
faster than SHA-256.

4.2 Elliptic Curves

Elliptic curves is a widely used cryptographic primitive, which is popular for
signatures, proof protocols, key agreement and many other use cases. The main
advantage of elliptic curves is that finding the discrete logarithm problem in a
group of curve points is hard, and the 128-bit security is achieved for rather
small fields (from 256- to 384 bits) compared to integer fields where much
bigger (2048 bits and higher) modulus is required. The discrete logarithm
problem is defined as follows. For given curve points G and H on the curve
find integer x such that s·G = H where · is the scalar multiplication in the group.

The Dusk Network protocol utilizes Elliptic-curve-based Diffie-
Hellman Key Agreement (ECDH) to generate shared symmetric key for secure
communication.

4.2.1 Ristretto

The number of points on a curve, also called the curve order, is
a composite number for some curves, whereas some protocols, e.g.
zero-knowledge proof systems, prefer prime-order groups. Moreover,
it is desired that any point on a curve can be mapped efficiently to such a group.

Ristretto [LV18] creates a prime order group from the group of
points on the fast Curve25519 (though it can be used for other curves with
cofactors 4 and 8). The resulting group is 8 times smaller than the order of
Ed25519 and the corresponding scalar field is called Ristretto field. As a
result, Ristretto keeps the high performance of Curve25519 while providing a
prime order group for ZK protocols.

Details are as follows. Curve25519 has the following parame-
ters:

Curve equation: y2 = x3 + 486662 · x2 + x
p: 2255 − 19

order: 2252 + 27742317777372353535851937790883648493
co-factor: 8
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Curve25519 is birationally equivalent to a ed25519 [J B+11], a Twisted Edwards
curve.

4.2.2 Zerocaf

As we want elliptic curve signatures efficiently verifiable in zero knowledge, and
also want to prove the knowledge of a private key for 1-of-many public keys,
we utilize Doppio curve whose prime field is identical to the Ristretto scalar
field. Zerocaf [PP19] is an implementation of the Doppio curve, which has the
following parameters:

Curve equation:y2 = x3 + 346598 · x2 + x
p: 2252 + 27742317777372353535851937790883648493

order:2249 − 15145038707218910765482344729778085401
co-factor: 8

The use of a Ristretto scalar field allows for the capitalization of the speed
of Twisted Edwards curve arithmetic, without the pitfalls through security or
implementation

4.3 Signature Schemes

With a digital signature one can authenticate a message by binding his private
key to it in a verifiable way. To process a long message, a cryptographic hash
function is employed (Section 4.1), whereas a private key is mixed with a hash
on an elliptic curve (Section 4.2). Signature schemes have to adhere to the
following properties:

1. Unforgeability – No efficient adversary can produce a signature for a
given message with non-negligible probability.

2. Message binding – No efficient adversary can find another message for
which the same signature value is valid even if he knows the private key.

3. Non-malleability – The signature value can not be modified to another
value valid for the same message.

4.3.1 EdDSA

EdDSA is an elliptic-curve-based digital signature scheme proposed in [J B+11].
It is known for its fast performance thanks to the curve choice (the same used
in Ristretto Section 4.2.1). The signature scheme works as follows:

1. Public key PK = s ·G, where s = H(sk1), sk1 is the private key and G is
the group generator.

2. R = r · G, where r = H(sk2,M), where M is the message and sk2 is the
signature private key.

3. S = r +H(R,PK,M) · s.
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The signature is (R,S).

To verify the alleged signature (R,S), one checks the following
equation:

8 · S ·G = 8 ·R+ 8 · H(R,PK,M) · PK.

EdDSA is used in the message authentication scheme of the Dusk Network
protocol to preserve the integrity of the peer-to-peer message exchange.

4.3.2 bLSAG/MLSAG

Ring signature is a primitive that allows a signer to hide within a set of pre-
defined public keys (a ring). When used in digital currencies, ring signatures
are utilized to prove coin spending, so a double-spent protection is required. A
linkable ring signature gives this protection as signing two messages with the
same key is detected. Formally, a secure linkable ring signature scheme has to
satisfy the following properties:

1. Anonymity – The identity of the signer can not be deduced from the
signature by an efficient adversary. The ring signature only reveals that
the private keys belongs to one of the identities in the ring.

2. Linkability – The private key used to sign two different messages will be
linked.

3. Exculpability – The identity of the signer can not be deduced from the
signature even if all the private keys are known.

Based on the earlier works, [LKW04] defined a novel ring signature scheme called
Linkable Spontaneous Anonymous Group signature. Unfortunately, in LSAG,
the linkability was only offered in the signatures utilizing the same rings. To
mitigate that, Adam Back had proposed [Bac02] a modification to LSAG that
came to be known as Back Linkable Spontaneous Anonymous Group signature.
bLSAG works as follows:

1. PKi = ski ·G.

2. I = ski · Hq(PKi), where Hq is a hash to curve function.

3. Generate random numbers α ∈ Zq and ∀j 6=irj ∈ Zq.

4. Calculate ci+1 = H(M,α ·G,α · Hq(PKi), where M is the message to be
signed.

5. ∀j 6=icj+1 = H(M, rj ·G+ cj · PKj , rj · Hq(PKj), ck · I).

6. Calculate ri = α− ski · ci.
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The signature is (c1, r1, ..., rn, I). To verify it, one calculates the value of c1.

[NMM16] improves bLSAG to enable signing of multiple inputs
with multiple private keys in a scheme called Multi-Linkable Spontaneous
Anonymous Group signature.

4.3.3 BLS

Boneh-Lynn-Shacham signatures [BLS01] utilize pairing-friendly elliptic curves,
such as BN-256 [NNS10] and BLS12-381 to create a short aggregatable sig-
nature scheme. Since signatures are elements of an elliptic curve, they are short.

Let e be a bilinear pairing G0 × G1 ← GT with three groups of
order q where G0 and G1 are the generators for groups G0 and G1. The BLS
signature is defined as follows:

1. Public key PK = sk ·G1, where sk is the secret key.

2. Signature σ = (H(m))sk ∈ G0, where m is the (hash of the) message to
be signed.

The alleged signature σ is verified as follows:

e(G1, σ) = e(PK,H(m))

BLS signature scheme enables signature aggregation, which is utilized in the
Dusk Network protocol to decrease the footprint of the consensus protocol ex-
ecution on the block. Let Hm2 be SHAKE128, a variable-output-length hash
function with output length m bits. Then define:

1. T = (t1, t2, . . . , tn) ∈ (Zn2128) = H128n
2 (PK1, PK2, . . . , PKn)

2. Aggregated signature is σ = σt11 · · ·σtnn .

To verify the alleged aggregated signature σ, do

1. Compute aggregated public key apk = PKt1
1 · · ·PKtn

n

2. Verify e(G1, σ) = e(apk,H(m1)).

4.4 Zero-knowledge Proofs

Zero-knowledge protocols are essential to Dusk Network as we protect both the
privacy of protocol users and confidentiality of the data they exchange with.

A secure zero knowledge proof of knowledge protocol has the
following properties:

1. Completeness – An honest Prover P succeeds in convincing the Verifier
V of the statement.
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2. Soundness – Malicious Prover fails to prove the truth of the statement.

3. Zero-knowledgeness - The proof reveals no information other than the
fact that the statement is true.

4.4.1 Commitment Scheme

Commitment is an important cryptographic primitive that allows committing to
a certain value without revealing it but later being able to prove that a certain
value was committed to. Formally, a secure commitment scheme must be hiding
(value can not be extracted) and binding (no other value can be opened to).

Pedersen Commitment

Pedersen Commitment scheme is defined as

C(x; r) = r ·G+ x ·H

where G,H are group elements whose discrete logarithm relation is unknown,
+ is the group operation and · is a scalar multiplication in the group. In our
case the group is the group of points on an elliptic curve.

Pedersen commitment is information hiding (not even immensely
powerful adversary can deduce the message) but only computationally binding
(efficient adversaries can not open a commitment to a different message). It is
partially homomorphic:

C(x1; r1) + C(x2; r2) = C(x1 + x2; r1 + r2).

To guarantee that the discrete logarithm of G to H is unknown, the latter is a
hash of the former:

H ← hashToPoint(H(G)).

Vector Pedersen Commitment

Pedersen commitment scheme can be extended to vectors v = {v1, ..., vn} to be
committed:

C(v) = r ·G+
∑
i

vi ·Hi = r ·G+ v ·H

with H = {H1, ...,Hn} is generated as follows:

Hi ← hashToPoint(H(G||i)) for all i ∈ {1, ..., n}.
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4.4.2 Bulletproofs

Bulletproofs [Bun+18] is a zero-knowledge protocol designed for range
proofs for committed values and for proofs of computational integrity
of arithmetic circuits1. The proofs are short (logarithmic in the circuit
size) and do not require a trusted setup (i.e. the circuit description and
supplementary data needed for proofs are generated using only public
randomness). However, the verification time scales linearly with circuit size.
This makes Bulletproofs more suitable for proving the integrity of small circuits.

We use Bulletproofs to prove computational integrity of several
circuits, most of which invoke a Poseidon hash function. Even though the
performance of Poseidon is slower than regular hash functions such as SHA-3,
it is smaller as a circuit thus making the Bulletproofs proof shorter and its
generation and verification faster.

1Computations in a prime field using only multiplication and addition gates.
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5 Reaching Consensus

As discussed in the earlier sections, consensus protocols play a vital role in
the security of distributed storage and state machines, so the inevitability of
the fact that the entire section would be dedicated to the vastly complex topic
of state machine replication is fairly self-evident. The section concentrates on
Segregated Byzantine Agreement, a novel consensus protocol briefly mentioned
in the Section 3. The section will first highlight definitions and the security
assumptions of the consensus protocol before assessing the important highlights
of the protocol in question.

5.1 Definitions

The definitions and the security assumptions of the design tend to shape
the use cases of the protocol. Segregated Byzantine Agreement is no
exception to the rule with the goal being to define the most efficient
Proof-of-Stake protocol which would persist to be permission-less with
near-instant or instant finality. SBA is a permission-less Proof-of-Stake
protocol with statistical finality guarantees. The protocol relies on the
Honest Majority of Money (an Adversary can corrupt consensus partici-
pants controlling up to f percent of the total stake value [≥ 3f+1]) assumption.

The node definitions are inspired by [PS17]. In the particular
case, a node can be described as a deterministic Turing Machine which is
differentiated through the secret K in Block Generators (see Section 5.7)
case and a public key pk in Provisioners (see Section 5.8) case. Nodes joining
the network can be honest or corrupt. Once a node becomes corrupt, the stake
under the control of the particular node is considered to be corrupt. A node is
defined as an honest node if it does not deviated from the prescribed protocol
execution rules. On the other hand, a corrupt node is permitted to exhibit
arbitrary behaviour, meaning that it can deviate from the prescribed protocol
execution rules. The number of nodes is orthogonal to the security of the
consensus protocol, as long as the Honest Majority of Money assumption is
preserved, due to each staked DUSK being abstractly evaluated as a unique
node. An Adversary A is permitted to corrupt an honest node by issuing a
CORRUPT message as long as the percentage of total stake under the control of
the corrupt nodes does not exceed f . The nodes can be awake or asleep, with
a node asleep for less than n rounds being called a light sleeper (for brevity,
we assume that the corrupt nodes are always awake) and a node asleep for
more than n round being called a deepsleeper. An Adversary A is permitted
to put the node to sleep by issuing a SLEEP message as long as the total size of
the stake under control of the honest awake nodes exceeds 2f . An Adversary
A is permitted to wake up the node by issuing a WAKEUP message. If a node
has been asleep for more that n rounds before receiving a WAKEUP message, it
respawns as a new node.

14



Definition. A consensus protocol has statistical finality when
the probability of a fork during a single execution round is negligible.

Proof. In case of Segregated Byzantine Agreement, the fork can
be produced by ”double-voting” during the consequent steps of the execution
round (two Block Reduction steps (see Section 5.5) and a Block Agreement
step (see Section 5.6). A ”double-vote” occurs when a node votes for
two separate candidate blocks in the same voting step. Taking the node
assumptions defined above into account, a ”double-vote” can only be produced
by a corrupt node, meaning that in order to produce a fork, an Adversary
has to receive the control of the supermajority in three consequent consensus
steps. The probability of the aforementioned event happening can be defined
through a formula below.

Assumption. |honest|∩|awake||corrupt| ≥ 1 + ε, where ε > 1.

The Adversary A is allowed to corrupt and coordinate nodes in control of up
to f percent of the total stake. A is a mildly adaptive Adversary, meaning that
the corruption of a node takes place t rounds after the CORRUPT message is
issued. A does not have a power to shuffle the order of the messages delivered
to the honest nodes.

The nodes on the network are assumed to have loosely synchro-
nized clocks and the network itself is presumed to be weakly synchronous. A
weakly synchronous network can delay the messages up to a bound ∆, which
is unknown.

Failure Rate

The failure rate is the probability of the safety guarantees of the protocol step
(excluding Block Generation [Section 5.4] being breached. In particular, the
failure rate indicates the probability of an Adversary A obtaining a superma-
jority in a committee. The probability function is outlined in a formula below,
where N is the committee size, τ is the threshold of votes in a committee re-
quired to proceed to the next step and h is the ratio of the honest participants:

N∑
k=floor(τ ·N+1)

(
N
k

)
· (1− h)k · hN−k =

N∑
k=ceil(τ ·N)

N !·(1−h)k·hN−k

k!·(N−k)! ≤ fsteps

Figure 3: The formula calculating the failure rate per step fsteps .

The probability of an Adversary A successfully creating a fork is equal
to the probability of an Adversary A obtaining a supermajority in the
two consequent Block Reduction steps (([Pr]sBR)2 ≤ (fsteps )2) and a Block
Agreement step (([Pr]sBA ≤ fsteps )) or ([Pr]sBR)2 · [Pr]sBA = (frounds )3 ≤ frounds ,
which is mapped on a graph below with varying committee sizes:
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Liveliness Rate

The liveliness rate indicates the probability of an honest majority being obtained
in a committee. The probability function is outlined in a formula below:

1−
floor(τ ·N)∑

k=1

(
N
k

)
· hk · (1− h)N−k = 1−

floor(τ ·N)∑
k=1

N !·hk·(1−h)N−k

k!·(N−k)! ≤ fstepl

Figure 4: The formula calculating the failure rate per step fstepl .

The probability of a successful consensus round termination
is equal to the probability of an supermajority obtained in the
consequent Block Generation ([Pr]lBG ≥ h), two Block Reduction
(([Pr]lBR)2 ≥ (fstepl )2) and Block Agreement ([Pr]lBA ≥ fstepl ) steps or

[Pr]lBG · ([Pr]lBR)2 · [Pr]lBA = h · (fstepl )3 ≤ froundl , which is mapped on a
graph below with varying committee sizes:
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5.2 Segregated Byzantine Agreement

Candidate
Block #1

Candidate
Block #2

Candidate
Block #3

Reduction
Step #1

Reduction
Step #2

Agreement
Step

Block #491 Block #492 Block #493

Figure 5: Segregated Byzantine Agreement

The roles in the protocol are split between two distinct node types: Block
Generators and Provisioners. Block Generators retain their privacy, with the
proofs of stake computed in zero-knowledge to preserve the anonymity of the
Block Generator. On the other hand, Provisioners are required to deanonymize
their stakes and remain transparent about their activities in the consensus while
their stake remains valid.
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Both bids and stakes have a registration maturity of 2 · t, which begins when
a Bid or Stake transaction is included in a final block and is required to elapse
before the node is eligible to participate in the consensus.
Segregated Byzantine Agreement is made up of a single loop containing three
phases: Block Generation (Section 5.4), Block Reduction (Section 5.5) and
Block Agreement (Section 5.6). The first two rely on the weakly synchronous
assumptions of the network highlighted in Section 5.1 while the Block Agree-
ment phase is asynchronous. The asynchronicity of the third phase is vital
to enable the consensus to remain ”fork-free” even under the most strenuous
conditions defined in Section 3.1.

Block
Generation

Step

Block
Reduction
Step #1

Block
Reduction
Step #2

Block
Agreement

Step

Block #...

if success

Figure 6: Segregated Byzantine Agreement round

5.3 Proof-of-Blind Bid

The Proof-of-Blind Bid protocol is an implementation of a Private
Proof-of-Stake protocol conceptualized by Dusk Network. Private
Proof-of-Stake protocols fulfill the requirements of Proof-of-Stake protocols
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while additionally preserving the anonymity of the participants of the
protocol execution trace and the values of the corresponding stakes. The
Proof-of-Blind Bid protocol enables the underlying Proof-of-Stake protocol to
extract the leaders for the corresponding round in a black-box manner. The
Proof-of-Blind Bid protocol represents a more efficient implementation of
Private Proof-of-Stake to [GOT19].

The Proof-of-Blind Bid protocol requires the valid bids to be
stored in a Merkle Tree. From there, when competing for a leadership position
to generate a candidate block, a Block Generator is required to prove the
inclusion of his bid in the Merkle Tree, followed by the proof of knowledge
of the secret K (the cryptographic hash of which is included in the bid).
Afterwards, the Block Generator computes his/her score and proves the
correctness of the computation before propagating the score alongside the
candidate block. The process can be conceptualized in a function defined below:

Function FPoBB

FPoBB is a function to generate a blind bid score and proof of the cor-
rect computation which takes the bid (where bid represents a tuple of
(commitment,H(K)), bid value d and secret K as an input and outputs score
and proof π

FPoBB(bid, d,K, context):

1. Check if bid belongs to the Merkle Tree bid set T .

2. If true, compute the score using the seed, round, step, bid, d and K..

3. If score > difficulty, then compute the proof π. The proof π has to
consist of the following statements:

(a) bid ∈ T .

(b) Knowledge of the secret K.

(c) Correctness of the computation of the score,

4. Return score and π.

5.4 Block Generation

The Block Generation function is utilized in Segregated Byzantine Agreement
to participate in the generation of the candidate blocks based on the outcome
of the Proof-of-Blind Bid execution. If a Block Generator has successfully
executed the Proof-of-Blind Bid protocol and received a score greater than
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the predefined difficulty, then it can proceed with the Block Generation.

Function FBG

FBG is a function to produce a candidateblock,

FPoBB(bid, d,K, context):

1. Check if bid belongs to the Mekle Tree bid set T .

2. If true, call FPoBB(bid, d,K, context).

3. If score > difficulty, then create candidateblock.

4. Propagate score and π followed by candidateblock.

5.5 Block Reduction

The Block Reduction function is utilized in Segregated Byzantine Agreement
is based on [TA84], which reduces the multivariable inputs to a single variable
output before proceeding to Binary Agreement. However, unlike BBAF
[Mic17], the Turpin and Coan algorithm is not utilized as a reduction function
for a Binary Agreement protocol. Instead, the aforementioned algorithm is run
in a 3-phase loop until a favourable outcome is reached. The function can be
conceptualized as defined below:
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Function FBR

FBR is a function to reach an agreement on a uniform value.

FBR(stake, x, context):

1. Check if stake belongs to the stake set S.

2. If true, check if the node is elected for a committee in round r and step s.

3. If true, start timer t and propagate x.

4. If 2f messages with x are received, check if the node is elected for a
committee in round r and step s + 1, restart timer t and propagate x.
Else, if timer t expires, check if the node is elected for a committee in
round r and step s+ 1, restart timer t and propagate nil.

5. If 2f messages with x are received, proceed to FBA. Otherwise, if 2f
messages with nil are received or the timer t expires, abort the execution
and return to FBG.

5.6 Block Agreement

Block Agreement is an asynchronous function running in parallel
with the main loop. Successful termination of the function
indicates that the main loop has been successfully executed. The
function provides a statistical guarantee that at least one honest
and awake node has received a set of votes exceeding the minimum
threshold required to successfully terminate the respective phase of the protocol.
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Function FBA

FBA is a function utilized to reach the terminate of the execution loop
of the round if the previous two phases have been executed correctly.

FBA(x):

1. Check if stake belongs to the stake set S.

2. If true, check if the node is elected for a committee in round r and step s.

3. If true, propagate a set of at least 2 · (2f + 1) signatures extracted from
the FBA messages.

4. If 2f valid messages are received, terminate the execution loop.

5.7 Block Generator

Block Generator is the first of the two node types eligible to participate in
the consensus. To become a Block Generator, a node has to submit a Bid
transaction.

The Block Generator is eligible to participate in one phase -
Block Generation phase. In the aforementioned phase, Block Generators
participate in a non-interactive lottery to be able to forge a candidate block.

5.8 Provisioner

Provisioner is the second of the two full-node types eligible to participate
in the consensus. To become a Provisioner, a node has to submit a Stake
transaction. Unlike a Block Generator, a Provisioner node is required to
deanonymize the value of the stake to be able to participate in the consensus.
While it is technically possible to obfuscate the stake value, the team has
decided against the latter as the addition of stake value obfuscation would
have slowed down the consensus and simultaneously increased the block size.

The Provisioner is eligible to participate in two phases - Block
Reduction and Block Agreement.

5.9 Reputation Module

The reputation module, originally formalized in [BFK17], enables Dusk Network
to increase the security of the consensus protocol by assigning the Provisioners
with a reputation based on their participation record in the consensus. The
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technique permits the consensus to prevent potentially malicious behaviour as
well as penalize the nodes with slow network connection or running a bug-ridden
implementation of the protocol.

6 Injecting Privacy Into Smart Contracts

The state layer of the protocol, briefly discussed in the Section 3 would have
been an impossible feat without an underlying distributed state machine. In
the particular case of Dusk Network, the state machine is realized in form of
a Virtual Machine. In particular, the Dusk Network protocol includes native
support of a Turing-complete Virtual Machine. The Virtual Machine is based
on WebAssembly [Web17], a binary instruction set format for a stack-based
Virtual Machine. The Virtual Machine defined by Dusk Network includes the
native support of zero-knowledge proof verification, enabling the preservation of
privacy on the state layer and shifting the majority of computational workload
from the distributed state machine to the user. The native support of zero-
knowledge proof verification is also vital to support the Confidential Security
Contract (XSC) [Mah19] standard proposed.

7 Future Work

As the research and development of the Dusk Network protocol continues, the
three subsections listed below represent the main priorities for the team, in
terms of advancement of the security and the featureset of the protocol.

7.1 Transaction Model

Since the publication of the Bitcoin whitepaper [Nak08] more than a decade
ago, two transactional models have gained an unequivocal duopoly amongst
the digital currency protocols. UTXO (Unspent Transaction Output),
introduced in the aforementioned whitepaper, implements a transaction
structure consisting of the so-called ”inputs” and ”outputs”, which balance
to zero (including the transaction fees). The ”input” in a transaction
references an unspent ”output”, fulfilling the spending conditions defined in
the previously mentioned ”output”, while the ”output” defines the spending
conditions for the future spenders to fulfill. The reader should note that the
”inputs” are required to be spent in their entirety, meaning that if Alice
wants to send 2 tokens to Bob and her ”input” includes 5 tokens, she needs
to include a ”change output” of 3 tokens to herself in the transaction.
On the other side of the aisle, an account model, pioneered by Ethereum
[Woo19], stores the total balance of the address instead of tracking the
unspent ”outputs” available to that particular address. A special field
labelled nonce plays a crucial role in preventing the ”double-spend” attacks
in protocols utilizing account models and the user is required to increment
the nonce of the account when transacting while the network nodes are
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required to keep track of the nonces attributed to the existing accounts.
Various proposals [Leu+19] have been published throughout the years to
alleviate the need for nonces, though none are currently utilized on a large scale.

The aforementioned duopoly is broken in the privacy-oriented
digital currencies. Both Monero [NMM16] and Zcash [Hop+19] employ
variations of the UTXO model, though neither directly reference the
”outputs” in the ”inputs” (with Zcash’s JoinSplit transaction type being
the exception), instead electing differing obfuscation techniques to obscure
the correct input. The breakthrough in the direction of an account
model geared towards anonymity-preserving protocols comes with the
publication of [KV19], which formalizes an account model with Private memory.

Dusk Network protocol will utilize [KV19] in the state layer,
enabling the functionality specified in [Mah19].

7.2 Block Compression

The scalability trilemma, term coined by Vitalik Buterin, represents the biggest
problem yet to be solved in the blockchain field. [Cro+16] outlines numerous
improvements which could potentially improve the scalability of the distributed
networks. Alongside other potential solutions, the team at Dusk Network has
decided to specifically tackle one issue relating to block propagation. Propaga-
tion of the block is seen as the main bottleneck preventing Segregated Byzantine
Agreement to achieve a major speed-up. The team has begun working on an
implementation of [Pin+17] as well as [Din+19] in order to assess the perfor-
mance of the two algorithms and integrate the better-performing one into the
Dusk Network protocol.

7.3 Networking

The original Dusk Network whitepaper had a section dedicated to the anony-
mous communication over the distributed network. Anonymous communication
protocols, such as [RSG98], enable the users to communicate with other over the
network without revealing their IP-addresses. During the early testing of the
Dusk Network Devnet, the team had implemented a I2P protocol based on gar-
lic routing to assess the communication penalty incurred due to the anonymity
preservation. The results indicated a substantial slowdown in the message prop-
agation times in comparison to the network with disabled I2P layer. As a result,
the team has made a decision to work on the protocol improvements before de-
ploying the anonymous network layer. The current version of the layer resembles
[Kov18] more closely than the previous iteration, discussed above.
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